中央空调自控系统设计安大伟_中央空调自动控制系统设计

       在当今这个日新月异的时代,中央空调自控系统设计安大伟也在不断发展变化。今天,我将和大家探讨关于中央空调自控系统设计安大伟的今日更新,以期为大家带来新的启示。

1.地源热泵空调应用设计?

2.中央空调能设计在电力设备间嘛

3.中央空调自动控制系统故障类型及处理方法

4.中央空调水系统节能技术案例分析

5.适合大户型的中央空调系统方案与解决方法

中央空调自控系统设计安大伟_中央空调自动控制系统设计

地源热泵空调应用设计?

       地源热泵空调应用设计是非常重要的,设计的好坏直接影响到之后使用的效果,每个细节的处理方式都会带来不同结果。中达咨询就地源热泵空调应用设计为大家介绍一下。

       一、引言

       随着经济的发展和人民生活水平的提高,公共建筑和住宅的供热和空调已成为普遍的需求。在满足人们健康、舒适要求的前提下,合理利用自然资源,保护环境,减少常规能源消耗,已成为暖通空调行业需要面对的一个重要问题。地源热泵空调系统通过吸收大地(包括土壤、井水、湖泊等)的冷热量,冬季从大地吸收热量,夏季从大地吸收冷量,再由热泵机组向建筑物供冷供热而实现节能,是一种利用可再生能源的高效节能、无污染的既可供暖又可制冷的新型空调系统。

       二、地源热泵空调系统

       地源热泵(Ground source heat pump)是一种利用地下浅层地热资源既可供热又可制冷的高效节能空调系统。系统通过地源热泵将环境中的热能提取出来对建筑物供暖或者将建筑物中的热能释放到环境中去而实现对建筑物的制冷,夏季可以将富余的热能存于地层中以备冬用;冬季可以将富余的冷能贮存于地层以备夏用。这样,通过利用地层自身的特点实现对建筑物、环境的能量交换,其原理(如图1)。

       三、地源热泵优点及应用现状

       地源热泵由于其技术上的优势,推广这种技术有明显的节能和环保效益,主要具有以下优点:(1)地源热泵系统比传统空调系统运行效率要高约40%,节能、运行费用低。(2)地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置。(3)开发推广地源热泵空调技术可彻底废除中小型燃煤锅炉房,无燃烧、无废弃物,没有任何污染,不会影响环境质量。(4)地表浅层地热资源量大面广,无处不在,它是一种清洁的可再生能源。

       随着地源热泵技术的进步,到2000年底,美国有超过40万台地源热泵系统在家庭、学校和商业建筑中使用,每年约提供8000~11000Gwh的终端能量。我国地源热泵空调系统的设计,主要包括两大部分:一是建筑物内的水环路空调系统的设计;二是地源热泵空调系统的地下部分的设计,即地下耦合热泵系统的地下热交换器、地表水热泵系统的地表水热交换器、地下水热泵系统的水井系统的设计。地下耦合热泵系统最早应用在1989年10月投入运行的上海闵行开发区办公楼(4305m2,冷负荷4532kW,热负荷231kW),其技术和设备均由美国提供,使用情况良好。目前在我国来说,技术上比较成熟、利用可行性较大、实施的工程项目较多的还是地下水热泵系统。目前国内生产水源热泵机组的厂家也已达到二、三十家,因为国内还没有颁布水源热泵机组的生产技术标准,国内厂家生产的产品质量差别较大,从有些厂家的产品样本来看,技术参数不完整、不准确。

       四、地源热泵空调系统设计

       1.地源热泵系统分类。地源热泵系统按其循环形式可分为:开式循环系统、闭式循环系统、混合循环系统。(1)开式循环系统。开式循环系统是其管道中的水来自湖泊、河流或者竖井之中的水源,在以与闭式循环相同的方式与建筑物交换热量之后,水流回到原来的地方或者排放到其它的合适地点。(2)闭式循环系统。封闭循环系统是指冷(热)源侧的循环水在机组室外换热器与地源换热器间形成封闭循环。管道可以通过垂直井埋入地下150~200英尺深或水平埋入地下4~6英尺处,也可以置池塘的底部。在冬天,管中的流体从地下抽取热量,带入建筑物中,在夏天则是将建筑物内的热能通过管道送入地下储存;所用管道为高密度聚乙烯管或其他防腐管道作为输送和地源热交换器材料。闭式循环系统是一种比较稳定可靠的常规循环系统,对地下水、地下环境没有污染,一般设计应优先考虑该循环系统。(3)混合循环系统。混合循环系统的地下换热器一般按热负荷来计算,夏天所需的额外的冷负荷由常规的冷却塔来提供。对于地下设计热交换空间不够充分,或垂直埋管困难等地下特殊情况,可考虑设计混合循环系统。

       2.系统设计参数讨论。关于(冷)热源侧水流量,要由最大得热量和最大释热量确定的。埋管中水流速的选取取决于埋管循环流程长度、埋管材料、管径大小、当地地源条件以及机组的特性要求。一般如提高水流速度可适当增加换热系数,强化换热量,减小换热面积和换热管的耗材,但流速太快会增加循环水泵能量消耗,一般可取流速为0.65~1.5m/s。具体可当地条件进行优化分析与设计,其优化设计考虑的参数关系如下。复合能耗N=f(长度LLT、埋管材料Ma、管径D、地源温度Te,地源热指标Ke,机组特性Type)在机组选择上,设定地埋管进水温度,根据测井测出的进出水温差推算出地埋管出水温度,进而确定热泵机组中工质冬季的蒸发温度和冷凝温度。总之,我国幅员辽阔,地处温带,在不同地区气候条件差异很大,其负荷也迥然不同。因此不能照搬国外的技术成果,而要开发适合我国气候特点的技术。

       3.机组的设计。地源热泵的形式比较多,其中商用化最为广泛的是蒸汽压缩式热泵。以水-水系统为例,由一个室外机组和多个室内机组组成。该系统可以对每个空调室进行单独调节,满足各个空调室的要求,具有较好的节能效果。变频户式地源热泵空调系统加上独立的新风系统是一很有发展前景的理想的节能舒适型户式中央空调系统,因而其优化设计具有极其重要的价值。传统的制冷系统设计方法是基于经验加实验为主,通常经验设计方法简便易行,对理论知识和实验条件等依赖性相对较小。然而经验设计方法不可避免地具有直接和可靠性低、稳定性差的缺点,只适于产品的初步开发。基于理论预测的优化设计技术可以有效。

       最优化方法就是在一切可行方案中选出最优方案的方法。在最优化设计中,表征方案的一切独立变量为设计变量,最优化方法就是研究如何合理地确定这些变量的方法。评价方案优劣的指标决定于该方案所选定的设计变量,即该指标为设计变量的函数-目标函数。在系统优化设计中,设计变量的取值常常受到种种条件的限制,即约束条件。变频户式地源热泵空调系统由变频压缩机、冷凝器、蒸发器、电子膨胀阀、室内机、制冷剂管路和水泵水管路系统组成。根据制冷系统热力学理论,利用参数动态分布、相互关联的方法,建立系统各部件数学模型和运行参数动态方程,组成系统运行参数的方程组,并对该系统进行动态模拟。模拟系统的动态特性,为优化设计提供依据。为满足空调系统的节能、热舒适性及制冷制热好的效果,空调系统的能效比、降(升)温速率和降(升)温幅度要达到指标要求。因而在优化设计时,分别选取能效比、降(升)温速率和降(升)温幅度为目标函数的多目标优化方法。同时考虑满足冷凝器和蒸发器结构、面积范围、迎面风速范围、系统温度和压力变化范围、水和制冷剂流量范围、过冷过热度范围和室内机数量等约束条件的要求,利用优化方法进行对上述目标多目标优化计算,从而达到针对不同地域的地源热泵系统的优化设计的目的。

       4.地源热泵地下换热器形式与布设。土壤热交换器是地源泵机组设计的关键。地源热土壤换热器有多种形式,如水平埋管、竖直埋管等,这两种埋管型式各有自身的特点和应用环境。在中国采用竖直埋管更显示出其优越性:节约用地面积,换热性能好,可安装在建筑物基础、道路、绿地、广场、操场等下面而不影响上部的使用功能,甚至可在建筑物桩基中设置埋管,见缝插针充分利用可利用的土地面积。下面就竖直埋管换热器的设计进行简单的探讨。

       (1)竖直埋管材料和深度。埋管材料最好采用塑料管,因与金属管相比,塑料管具有耐腐蚀、易加工、传热性能可满足换热要求、价格便宜等优点,可供选用的管材有高密度聚乙烯管(PE管)、铝塑管等。竖直埋管的管径也可有不同选择,如DN20、DN25、DN32、DN50等。竖直埋管可须根据当地地质条件而定,可以从20m~200m。确定深度应综合考虑占地面积、钻孔设备、钻孔成本和工程规模。如果地表土壤层很厚,钻孔费用相对便宜,宜采用较深的竖直埋管,反之,采用浅埋。埋管间距一般以5~6m及以上,要综合考虑当地的地质及土壤的传热情况。

       (2)竖直埋管换热器回填、灵敏度。竖直埋管换热器的形成是从地面向下钻孔达到预计深度,将制作好的U型管下入孔中,然后在孔中回填不同材料。在接近地表层处用水平集水管、分水管将所有U型管并联构成地下换热器。根据地质结构不同,回填材料可以选用浇铸混凝土、回填沙石散料或回填土壤等。材料选择要兼顾工程造价、传热性能、施工方便等因素。从实际测试比较浇铸混凝土换热性能最好,但造价高、施工难度大,但可结合建筑物桩基一起施工。

       (3)竖直埋管换热器中传热的衰减。竖直埋管换热器中流动的循环水的温度是不断变化的。夏季供冷工况进行时,由于蓄热地温提高,机组运行时水温不断上升,停机时水温又有所下降,当建筑物得热达到最大时水温升至最高点。冬季供热工况运行时则相反,由于取热地温下降,当建筑物失热最多时,换热器中水温达到最低点。对于签埋管尤其严重。设计时,首先应设定换热器埋管中循环水最高温度和最低温度。由于埋管换热器的表面结垢等影响,设计时要考虑衰减,设定值应通过经济比较选择最佳状态点。

       五、结论

       地源热泵作为一种环保节能的空调方式,是一项跨专业、跨学科的综合能源利用技术,需要通过相关专业技术人员的通力协作做好地源热泵机组的设计、安装、运行、维护等各个方面。近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大及法国、瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。

       更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:/#/?source=bdzd

中央空调能设计在电力设备间嘛

       本文着重阐述了该工程的空调设计,给出了空调主要设计参数、空调系统形式;并根据使用效果总结了设计经验。

       1、工程概况

       本项目为商住小区,本设计用地总面积38319.4平方米,总建筑面积148045.31平方米。,场地内分布有5幢23层的高层住宅、2栋写字楼及1~3层的裙房商业及一栋四层幼儿园,其中:高层住宅塔楼高度均约69.95~71.25m。

       2、室内设计参数及通风设计参数

       (1)室内设计参数

       (2)通风设计参数

       3、空调系统设计

       3.1 本项目写字楼部分裙楼集中商业建筑面积约为17327.72m2,采用中央空调系统,系统总冷负荷为3465kW,选用2台1647kW水冷螺杆式冷水机组,冷冻机房设于地下二层,冷冻水温度为7/12℃,冷却塔选用超低噪音型,冷却水塔设于4,5栋裙楼屋顶。平均冷负荷指标为:193W/m2。

       3.2 商铺、住宅、写字楼及幼儿园均采用分体式空调,由电气专业预留用电量

       3.3 空调冷冻水系统

       冷水为一级泵变流量系统。由冷水机组降至7℃的冷水进入分水器,按各自的空调范围分区把冷水送至各末端设备。12℃的回水汇入集水器,经水过滤器及电子防锈除垢器经冷水泵加压再返回冷水机组。水平管及立管均为异程式,在每根回水立管上设有静态平衡阀,膨胀水箱设在4#楼主楼的屋面上,其补充水来自给水管,溢流及排污水接至屋面排水沟,系统高点设自动排气阀,系统低点设放水、排污阀。

       3.4 空调冷却水系统

       被冷水机组升温至37℃的冷却水送至冷却塔进行冷却,水温降至32℃,经水过滤器及电子防锈除垢器后,经冷却水泵加压再返回冷水机组。冷却塔承水盘之间设带关断阀的连通管,其补充水来自给水高位水箱,溢流、排污水接至屋面排水沟。在制冷机房内设有排水沟及集水井,以排除冷冻水、冷却水的排污、放空或意外泄漏水。

       3.5 风系统

       地下一层超市及裙房一~三层采用全空气定风量系统。

       地下一层及地上三层均为商业用房,采用集中送回风:室内回风与室外新风在风柜房混合后,经风柜过滤、盘管降温、除湿及风机加压进入消音静压箱,再经70℃防火阀风管及散流器送入室内。回风采用机房集中回风。为了节能,在过度季节尽量利用室外新风,新风入口及其通路均按全新风配置,风柜采用带热回收的风柜,可利用排风热量预冷新风。风柜设在风柜房内,冷凝水排至设在风柜房的地漏内。

       4、通风及加压送风、防排烟系统设计

       4.1 本工程4#、5#写字楼属一类公建,对防烟楼梯间及其前室或合用前室军分别设置机械正压送风系统。

       4.2 本工程的1#,2#,6#,7#,8#栋住宅楼,能满足自然排烟的,采用楼梯间及前室开窗进行自然排烟,对本项目不能满足自然排烟条件的防烟楼梯间及其前室或合用前室则分别设置机械正压送风系统,正压风机设于首层。

       4.3 本工程的地下一、,二层,对不能满足自然排烟条件的防烟楼梯间及其前室或合用前室均分别设置机械正压送风系统。风量分别为16000CMH及24000CMH,风机放置在首层。

       4.4机械加压送风系统余压要求:a.防烟楼梯间:40Pa到50Pa,

       b.前室、合用前室、消防电梯前室:25Pa到30Pa。

       4.5本工程中有的合用前室开窗且总面积大于3m2,根据 GB50016-2006中自然排烟的有关规定,本工程中此类合用前室可以采用自然排烟方式.

       4.6本工程中有防烟楼梯靠外墙,每层均开窗且每5层总面积大于2m2,所以根据 GB50016-2006中自然排烟的有关规定,本工程中此类防烟楼梯可以采用自然排烟方

       4.7对地下停车库按防火分区分别设置独立的机械排风兼排烟系统及相应的补风系统,排烟量不小于6次/小时换气次数。各地下室车库均设置机械排风系统兼排烟系统,换气次数为6次/h设计,风机选用柜式风机,吊装在机房内。没有车道出入口自然补风的防火分区均设有机械补风系统,补风量按不小于3次/h设计。

       4.8变配电房及发电机房设有机械排风系统,与气体灭火后排气系统合用,通风管上设置电动防火阀,平时常开,气体灭火前电动关闭,灭火后远距离电动或手动开启。选用防爆风机吊装。

       4.9地下室设备房及内走道设机械排烟系统及机械补风系统;

       4.10对写字楼的裙楼商业按防火分区设置排烟系统,每个防烟分区面积不大于500平方米,并设单独控制的排烟口,排烟量按每平米不小于60立方米/小时计算。

       4.11 工程不能满足自然排烟要求的内走道分别设置独立的机械排烟系统,排烟量按每平米不小于60立方米/小时计算。

       4.12地下水泵房设置独立的送排风系统,选用轴流风机吊装。

       4.13地下制冷机房房设置独立的送排风系统,选用轴流风机吊装。

       4.14通风机传动装置的外露部分以及通风机直通大气的进、出口,必须装设防护罩(网)或采取其他安全方式.

       4.15机械加压送风系统管道、排烟系统管道和补风管道的风速应符合以下要求:

       1.采用金属管道时,不宜大于20m/s;

       2.采用非金属管道时,不宜大于15m/s;

       5、空调的自动控制:

       5.1 系统控制:

       (1)冷水机组控制:由冷水机组自带的微机自行控制。

       (2)机、泵、塔控制:在冷水机组冷水及冷却水出水管上设有流水开关,在冷水机组冷水及冷却水回水管上设有电动开、关阀,在冷却塔进水管上也设有电动开、关阀。 开机的程序为:各电动阀开→冷却塔风机启动→冷却水泵启动(冷却水流水开关闭合)→冷水泵启动(冷水流水开关闭合)→(延时)主机启动。

       停机的程序相反。

       (3)机、泵、塔群控:在冷水总供水管及回水管上装有温度传感器,在冷水总供回水管上还装有流量传感器。通过上述的冷水流量及供回水的温差,微机计算出系统的冷量,该冷量与所设计的软件的设定值比较,以确定最优的主机开启台数和启动与其配套的泵、塔。

       上述(2)(3)项,也可用各厂家自带的控制程序。

       5.2 冷水系统的旁通阀组:为解决冷水机组定流量运行与末端设备需变流量运行之间的矛盾,本设计在

       分、集水器之间设置了由总供、回水压差控制的带旁通阀的旁通阀组。

       5.3 风柜控制:

       (1)用风柜回风温度控制设在风柜冷冻回水管的电动三通阀(比例、积分)的通水量,以维持室内的设定温度。

       (2)配备风机的电机变频装置,以便根据控制要求改变风机转速,达到改变风量及节能的目的(变频器留有接入回风温度信号的接口)。

       6、管材设备要求

       6.1风管采用镀锌铁皮制作,每段风管之间采用法兰连接,法兰之间垫8501密封胶带。水管管径小于等于DN50时采用镀锌钢管,丝扣连接;管径大于DN50时采用无缝钢管,焊接,在需检修、拆换处用法兰连接。

       6.2 排烟风机应保证280℃时能连续工作30min。

       6.3 空调.通风及防排烟系统的风管镀锌钢板制作厚度如下表:

       7、节能设计要求

       7.1 制冷机组选用高能效比的水冷螺杆式冷水机组,满负荷及部分负荷时COP值均高于5.22,满足《公共建筑节能设计标准》的要求。

       7.2水泵采用高效节能型;中央空调水系统输送能效比ER=0.02049,满足《公共建筑节能设计标准》的要求;

       7.3 裙房空调风柜均采用带热回收的空调风柜;

       7.4 风机选择高效节能型,风机的最大单位风量耗功率WS=0.28<0.32W/(m /h)。大开间采用柜式空调末端,过渡季节可以全新风运行。

       7.5 所有卫生间均设排风;平时使用的风机房,空调机房及新风机房采取消声降噪措施。

       7.6 有些需要同时排风的部位采用全热交换器,在排除室内废气的同时,回收排风的能量。全热回收效率>60%.

       7.7 空调风管绝热层热阻:1.06m.k/w

       7.8 冷水供回水管需用不燃或难燃材料进行保温,选材见施工图纸,若采用难燃材料保温时,其外表面需用不燃材料作保护层。保温层厚度由产品供应商提出,并经设计院校对认可。

       本设计选用难燃型橡塑海绵,其厚度:  DN70~DN150 厚度:35mm

       >DN200 厚度:40mm

       空调冷凝水管,厚度:20mm

       7.9 严格执行国家相关节能规范,从建筑设计上满足建筑的保温隔热性能达到节能要求指标。

       7.10 设计尽量利用自然通风方式。

       7.11 地下车库根据使用情况开启风机的数量。

       8、噪声处理(环保节能)

       8.1凡有振动的设备,如风机等设减振基座或减振吊架;与设备连接的接管上设柔性减振接头。

       8.2 柴油发电机烟气设有净化水箱降温除尘,并排至住宅塔楼楼顶。

       8.3 发电机组燃道在进入建筑物前和设备间内设置自动和手动切断阀,储油间的油箱应密闭,且应设通向室外的通气管,通气管应设置带阻火器的呼吸阀。

       9、结束语:

       建筑防排烟设计是建筑消防设计中较复杂的环节,也是建筑生命安全系统的重点。各专业设计人员和施工管理人员一定要紧密配合,加强消防意识使建筑空调通风系统在满足人们使用要求的同时到达防火安全的效果。

       查询建筑企业、中标业绩、建造师在建、企业荣誉、工商信息、法律诉讼等信息,请登陆中达咨询、建设通或关注中达咨询公众号进行查询。

       更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:/#/?source=bdzd

中央空调自动控制系统故障类型及处理方法

       中央空调能设计在电力设备间。根据查询相关资料:电力设备间都配备有保护器,保护器是保护里面都是电子元件,工作时会有热量产生,需要中央空调冷却。中央空调系统由一个或多个冷热源系统和多个空气调节系统组成,该系统不同于传统冷剂式空调,集中处理空气以达到舒适要求。

中央空调水系统节能技术案例分析

       中央空调自动控制系统是现代建筑中必不可少的一部分,它可以通过精密的控制设备和传感器来实现对室内温度、湿度、空气质量等参数的精确控制。然而,由于这些设备和传感器涉及到复杂的电子技术和机械结构,所以在使用中可能会出现故障。

电力故障

       由于电路设计不合理、断路器跳闸或电源故障等原因,使中央空调自动控制系统无法正常工作。

传感器故障

       传感器是中央空调自动控制系统中重要的组成部分,用于测量室内温度、湿度、CO2浓度等参数,如果传感器故障,会影响中央空调系统的运行。

执行器故障

       执行器是控制中央空调系统开关的机构,如果执行器故障,将会影响空调的制冷或加热效果。

控制器故障

       控制器是中央空调自动控制系统的核心部件,控制中央空调系统的运行,如果控制器故障,整个中央空调系统将无法正常运行。

机械部件故障

       中央空调自动控制系统中还有很多机械部件,比如风机等,这些机械部件故障也会影响中央空调系统的正常工作。

定期检查和维护

       为了避免中央空调自动控制系统出现故障,我们应该定期对系统进行检查和维护,及时发现和处理系统故障,以保证系统的可靠运行。

适合大户型的中央空调系统方案与解决方法

        中央空调水系统节能技术案例分析

        关于下文总结出中央空调水系统的各项节能率为20.5%~31%,不到三年即可回收节能投资,而且空调系统运行正常,室内温湿度满足要求。那么,我为大家提供中央空调水系统节能技术案例分析,欢迎大家阅读浏览。

       

        一、冷源改造技术

        对于冷源机房容量选择大,通过台数控制不能满足安全、高效运行的情况,成熟的改造技术有:制冷机组变频控制;水蓄冷;增加低容量机组;扩大空调区域(例如,某政府高校约三万平米的综合楼的中央空调系统建成后,又将该系统惠及另外三栋共约九百平米的学员楼)等。以下结合有关工程讨论冷源改造技术。

        (一)制冷机组变频改造

        1、制冷机的性能系数COP现状

        2007年就二十二栋国家政府机构办公楼和大型公共建筑通过测试或根据运行记录计算机组的性能系数COP,其机组的COP普遍低于公共建筑的强制性标准。

        案例一A办公楼安装了三台500RT的离心式冷水机组(2001年投入运行),压缩机功率340kW。

        三台机组通常只运行一台,即使在天气炎热的情况下,也仅开启两台。通过测试,制冷机组的COP在3.50~4.14之间,低于公共建筑的强制性标准,也低于设计工况的COP。

        案例二B酒店的制冷机组为工频离心式机组(2001年投入运行),共有4?400USRT的机组,负荷最大时运行两台,机组的设计能效比为5.43。根据2007年10月22~31日对制冷机组运行参数的测试,1#机组的负荷率在41%~76%之间变化,COP值在3.33~4.27之间,低于公建标准。2#机组的负荷率在38%~86%之间变化,其中,在80%~86%的负荷率为10.93%,60%~69%负荷率的概率最大(34.82%)。COP值在2.88~4.62之间,低于公建标准。

        2、制冷主机COP节能改造

        冷水机组99%以上的时间运行在部分负荷工况。通过调节导流叶片开度来调节机组输出冷量的恒速离心机,最高效率点通常在70%~80%负荷左右,负荷率80%时对应的COP为5.885,负荷率100%时对应的COP为5.33,负荷率40%时COP为5.1,随着负荷降低,单位冷量能耗增加较显著。

        变频运行的制冷机,其最高效率点可以在部分负荷下,如40%~50%负荷左右,50%负荷对应的COP为11.95。机组变频控制还能提高机组的功率因数,优化机组启动性能,避开喘振点,提高机组可靠性。

        案例三C有限公司的中央空调采用了两台650冷吨离心式制冷机组。于2005年8月20日投入使用,冷水机组用于生产车间空调,24h不间断运行,负荷稳定,标准出水温度,夏天两台运行,冬天单台运行。

        1#机于2007年9月改造为变频制冷机组。经过一年多的运行实践,无论是在大负荷运行或是小负荷运行(只要符合变频条件),都比工频机组节能。

        根据2007年10月15日10:10~10月16日10:10的测试,两台机组负荷率在60%~67%。每天节省1439 kWh,节能率为20.85%。该机组工频运行的COP为7.03,变频时COP为10.05,即机组工频运行时的COP低,机组的节能效果好。

        如果5~10月(合计6个月)按开两台制冷机组计算(考虑0.8的安全系数),11月~次年4月(合计6个月)运行一台机组,电费为0.55元 / kwh,每年可为公司节省18.2万元,实际运行表明,节省的运行费用大于18.5万元。

        3、水蓄冷改造

        利用既有的常规冷水机组,改造为水蓄冷的系统。其方法是利用消防水池、原有蓄水设施或建筑物地下室等作为蓄冷容器,增加放冷泵、充冷泵、板式换热器设备。此项改造技术具有如下优点:

        (1)设备安全运行。避免?大马拉小车?;

        (2)节能。系统高负荷运转时间大幅度增加,制冷效率可以提高5%~8%;

        (3)经济效益。投资一般3~4年可以回收。水蓄冷不仅能为用户、为社会创造节能效益,而且创造的经济效益可用于其他节能改造项目,解决节能改造资金瓶颈问题;

        (4)社会效益。平衡电网负荷,充分发挥电站的发电效益,减少电厂投资,净化环境。

        案例四D科技大楼原为常规的中央空调系统(能源合同管理项目),制冷机组为离心式制冷机组,制冷量600冷吨。2008年改造为水系统中央空调,改造项目投入运行后,通过测试,得出以下几点:

        (1)满足设计要求。低谷时段所蓄的冷量,可以满足该大楼白天3~4h空调所需的冷量。

        (2)移峰填谷。在高温条件下,水蓄冷可以移峰888kWh,减少平谷段860kWh,增加1554kWh低谷段电量;在一般温度下,水蓄冷可以移峰684kWh,减少平谷段1034kWh,增加1414kWh低谷段电量,创造了社会效益和环境效益。

        (3)经济效益:在高温条件下,每天节约电费1988元;在一般气候下,节约1885元。

        (4)空调节能。节约电量3.6万kwh(不计发电厂的节煤量),占原用电量的5.70%;电费33675.3元,占总节约费用(75万元)的4.49%。

        (5)保证并提高机组的安全可靠运行系数。

        4、增加小容量机组

        案例五E办公楼设计时为三大一小制冷机组,业主为了节省投资改为三台大机组,投入运行后,在低负荷时,机组无法启动或者喘振。通过增加两台风冷热泵机组才满足大楼的正常供冷以及设备的正常运行。

        二、空调循环泵改造技术

        (一)空调循环泵变频改造的条件

        根据空调水系统的特点,借助智能自控技术、高速可靠的网络通讯技术及先进的控制软件,对空调水泵采用基于计算机网络的'智能控制变频技术。主要应具有以下优点:实时跟踪空调负荷,减少冷冻水、冷却水用量,减少能耗与运行费用;减少空调水系统设备的振动和磨损,延长设备的使用寿命;可以实现对水泵电机的?软启动?、?软停机?,减少电流对电机的冲击;提高电机的效率,改善其运行条件;降低电机和冷却塔的噪声。

        (二)工程实例概述

        案例六某高层商用写字楼,总建筑面积3.8万m2。大楼的中央空调系统冷热源采用两台600RT离心式冷水机组供冷,冬天由一台2.5t的燃油锅炉供暖,其它辅助设备。

        由于气候状况与室内热源变化,改造前,5月、9月运行一台主机,冷却水泵两台,一台冷冻水泵,一台冷却塔(四台风机);7月、8月运行两台主机,两台冷冻泵,四台冷却泵,四台冷却塔(六台风机)。

        控制水平停留在人工操作运行台数,水系统流量仅能在50%或100%运行。针对?大流量,小温差?运行状况进行节能改造,对两台冷冻水泵、两台冷却泵变频调速控制(设计要求,为避免变频水泵空转与倒流,不允许工频泵与变频泵同时运行)。冷热源控制系统的通信协议采用过程现场总线,控制器的算法采用模糊控制,水泵的运行状态以及中央空调系统中的主要过程参数实现界面集中监控。

        (三)改造效果分析

        1、测试结果

        通过测试,可以得出以下几点:

        (1)节能。制冷系统总节电率为24.85%。冷冻水泵、冷却水泵采用了模糊变频控制,不仅节省了水泵的用电量,而且提高了机组的能效比,1#机组能效比提高了12.79%,2#机组能效比提高了10.51%。

        (2)具有经济效益。写字楼中央空调部分年用电58万元左右,按改造后年节省24.85%的费用计算,则每年至少节省14.41万元。投资3~4年完全能回收。

        (3)降低了冷凝温度,提高了机组安全运行的可靠性。

        (4)增大了供回水温差。1#机组:变频运行,冷却水温差为3.0℃,冷冻水温差3.6℃;工频运行,1#机组冷却水温差为2.4℃,冷冻水温差1.812。2#机组:变频运行,冷却水温差为2.4℃,冷冻水温差3.7℃;工频运行,2#机组冷却水温差为1.6℃,冷冻水温差2.3℃。

        (5)减少了水流量。1#机组减少了27.25%.2#机组减少了27.93%。

        (6)提高室内温度的控制精度。在变频控制下,房间温度24.2℃;工频控制下,房间温度23.9℃。

        2、考核说明

        经过近一年的运行,系统运行正常,但有两点需要说明。

        (1)实际节电率为20.5%。主要原因为:改造前,中央空调水系统的运行状况处于节约型节能,也就是说,在某些时段不满足室内空气舒适度的要求(设备停止运行);改造后,系统根据室内舒适度运行,提高了环境服务质量。

        (2)没有考虑具体工程的实际情况,冷却水泵的频率下限值调得太低。重新设定冷却水泵的频率下限值,机组工作正常。

        三、结论

        通过以上的讨论,既有中央空调水系统的节能技术有:主机变频、空调泵变频、水蓄冷、高效泵。非线性、大滞后的中央空调水系统适合采用智能控制算法。多项工程节能改造表明:中央空调水系统的各项节能率为20.5%~31%,不到三年即可回收节能投资,而且空调系统运行正常,室内温湿度满足要求。

;

        ? 高档小区配上一套集空调、新风、净水三大系统于一体的中央空调是最完美的组合,满足了业主对生活品质的向往又可以节约能源环保生活。小兔马上介绍两款适合于大户型的中央空调系统方案以及相应的解决方案给大家参考,希望能帮助到那些渴望得到健康舒适生活环境,却对中央空调系统如何搭建不了解的业主们。?

适合于三室两厅户型的中央空调系统方案

       中央空调:韩国LG户式多联Multi?V?MINI?II空调机组,室外机ARU0141WS+室内机5台

       新风系统:松下全热交换器,主机型号FY-E35PMA,管罩FV-BG150,进气风口FV-GPV100C五个,排气风口FV-GPF100C五个

       中央净水:恩美特公寓型全屋水处理系统,包括恩美特前置过滤器PF-MEC?316-3/4,恩美特超滤直饮机kristall2000各一台

       方案优点:中央空调冬暖夏凉,送风舒适均匀,精准调节室温且不会出现“空调病”。新风系统是目前应对室内雾霾最有效的系统,可24小时持续为室内通风换气,有效过滤空气中的PM2.5,让我们远离空气污染。

适合于四室两厅户型的中央空调系统方案

       四室两厅户型160平方米或以上的户型可参考使用三菱重工KX6-Q系列中央空调安装方案,该方案使用了闻名于世的大冷量涡旋式压缩机的核心技术,采用先进的直流变频压缩机,综合能效比IPLV高达6.32,高效节能。同时还具有精准的温度控制,出色的低噪音特性,为业主营造恒温舒适的家居享受。下图为方案内容:

大户型中央空调系统解决方案

       1.层高过高如何提高采暖制冷的效果

       解决方案:较之于常规层高的房屋(一般为2.6-2.7米左右)。别墅的一般层高一般都为3米甚至以上的高度。再此前提下中央空调制冷和采暖的配比较之于一般层高的房屋会更高。如一般平层的配比为200w/平方。别墅为230-280w/平方。

       2.中央空调的外机功率较大。外机需要如何摆放较为合理

       解决方案:别墅由于面积较大,较之于平层一般外机的功率较大。因为体积也就较之平层会更大。一般的摆放位置位于本身建筑的自留机位或者位于门口或者阳台花园的平底之上。铺设可供平衡的水泥台面即可。

       3.中央空调系统的电压要求是否一样

       解决方案:别墅中央空调由于功率较大。较长配置380V的机器。因为别墅的供电电压也常为380V因此无需担心。

       4.中央空调系统的冷凝水排放细节

       解决方案:别墅中央空调系统由于层高较高。因此可自由选择中央空调系统是否配置提升水泵来降低层高的限制。对于提升水泵没有特别高的需求从而较少经济成本。

       5.吸顶式中央空调的运用

       一般平层由于层高问题无法采用机身较高的吸顶式中央空调。别墅由于层高较高。可以考虑在顶部需要采用满吊顶的时候才用更为高档的吸顶式中央空调系统。

       人们对空调的使用概念往往停留在夏天制冷这个方面,但是随着科技的发展,空调已经具备了净化空气等新技能。对于大户型来说,安装中央空调会比单个安装空调更加节省费用与节约能源。合理的中央空调系统方案才能“照顾”到家的每一个角落,让生活更加舒适起来。

       土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~

       好了,今天关于“中央空调自控系统设计安大伟”的话题就到这里了。希望大家能够通过我的讲解对“中央空调自控系统设计安大伟”有更全面、深入的了解,并且能够在今后的生活中更好地运用所学知识。